Lectures on Functor Homology

This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Franjou, Vincent. (Editor, http://id.loc.gov/vocabulary/relators/edt), Touzé, Antoine. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2015.
Edition:1st ed. 2015.
Series:Progress in Mathematics, 311
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-21305-7
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04509nam a22005535i 4500
001 978-3-319-21305-7
003 DE-He213
005 20200705053507.0
007 cr nn 008mamaa
008 151208s2015 gw | s |||| 0|eng d
020 |a 9783319213057  |9 978-3-319-21305-7 
024 7 |a 10.1007/978-3-319-21305-7  |2 doi 
050 4 |a QA169 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.6  |2 23 
245 1 0 |a Lectures on Functor Homology  |h [electronic resource] /  |c edited by Vincent Franjou, Antoine Touzé. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2015. 
300 |a VI, 149 p. 140 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 311 
505 0 |a Introduction -- A. Djament: Homologie stable des groupes à coefficients polynomiaux -- W. van der Kallen: Lectures on Bifunctors and Finite Generation of Rational Cohomology Algebras -- R. Mikhailov: Polynomial Functors and Homotopy Theory -- A. Touzé: Prerequisites of Homological Algebra. 
520 |a This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin’s strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov’s lectures highlight topological invariants: homotopy and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touzé’s introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Category Theory, Homological Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11035 
650 2 4 |a Group Theory and Generalizations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11078 
650 2 4 |a Algebraic Topology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28019 
700 1 |a Franjou, Vincent.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Touzé, Antoine.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319213040 
776 0 8 |i Printed edition:  |z 9783319213064 
776 0 8 |i Printed edition:  |z 9783319793337 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 311 
856 4 0 |u https://doi.org/10.1007/978-3-319-21305-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)