Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...
保存先:
第一著者: | |
---|---|
団体著者: | |
フォーマット: | 電子媒体 eBook |
言語: | English |
出版事項: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2005.
|
版: | 1st ed. 2005. |
シリーズ: | Lecture Notes in Mathematics,
1859 |
主題: | |
オンライン・アクセス: | https://doi.org/10.1007/b104209 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
目次:
- Preface
- Introduction
- Connected Reductive Groups and their Lie Algebras
- Deligne-Lusztig Induction
- Local Systems and Perverse Shaeves
- Geometrical Induction
- Deligne-Lusztig Induction and Fourier Transforms
- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
- References
- Index.