Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...

詳細記述

保存先:
書誌詳細
第一著者: Letellier, Emmanuel. (著者, http://id.loc.gov/vocabulary/relators/aut)
団体著者: SpringerLink (Online service)
フォーマット: 電子媒体 eBook
言語:English
出版事項: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
版:1st ed. 2005.
シリーズ:Lecture Notes in Mathematics, 1859
主題:
オンライン・アクセス:https://doi.org/10.1007/b104209
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
目次:
  • Preface
  • Introduction
  • Connected Reductive Groups and their Lie Algebras
  • Deligne-Lusztig Induction
  • Local Systems and Perverse Shaeves
  • Geometrical Induction
  • Deligne-Lusztig Induction and Fourier Transforms
  • Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
  • References
  • Index.