Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2005.
|
Ausgabe: | 1st ed. 2005. |
Schriftenreihe: | Lecture Notes in Mathematics,
1859 |
Schlagworte: | |
Online Zugang: | https://doi.org/10.1007/b104209 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Preface
- Introduction
- Connected Reductive Groups and their Lie Algebras
- Deligne-Lusztig Induction
- Local Systems and Perverse Shaeves
- Geometrical Induction
- Deligne-Lusztig Induction and Fourier Transforms
- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
- References
- Index.