Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Letellier, Emmanuel. (VerfasserIn, http://id.loc.gov/vocabulary/relators/aut)
Körperschaft: SpringerLink (Online service)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Ausgabe:1st ed. 2005.
Schriftenreihe:Lecture Notes in Mathematics, 1859
Schlagworte:
Online Zugang:https://doi.org/10.1007/b104209
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Preface
  • Introduction
  • Connected Reductive Groups and their Lie Algebras
  • Deligne-Lusztig Induction
  • Local Systems and Perverse Shaeves
  • Geometrical Induction
  • Deligne-Lusztig Induction and Fourier Transforms
  • Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
  • References
  • Index.