Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor Principal: Letellier, Emmanuel. (Autor, http://id.loc.gov/vocabulary/relators/aut)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Lenguaje:English
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Series:Lecture Notes in Mathematics, 1859
Materias:
Acceso en línea:https://doi.org/10.1007/b104209
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Tabla de Contenidos:
  • Preface
  • Introduction
  • Connected Reductive Groups and their Lie Algebras
  • Deligne-Lusztig Induction
  • Local Systems and Perverse Shaeves
  • Geometrical Induction
  • Deligne-Lusztig Induction and Fourier Transforms
  • Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
  • References
  • Index.