Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Letellier, Emmanuel. (Author, http://id.loc.gov/vocabulary/relators/aut)
Autor Corporativo: SpringerLink (Online service)
Formato: Recurso Electrónico livro electrónico
Idioma:English
Publicado em: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edição:1st ed. 2005.
Colecção:Lecture Notes in Mathematics, 1859
Assuntos:
Acesso em linha:https://doi.org/10.1007/b104209
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Sumário:
  • Preface
  • Introduction
  • Connected Reductive Groups and their Lie Algebras
  • Deligne-Lusztig Induction
  • Local Systems and Perverse Shaeves
  • Geometrical Induction
  • Deligne-Lusztig Induction and Fourier Transforms
  • Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
  • References
  • Index.