Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...
Сохранить в:
Главный автор: | |
---|---|
Соавтор: | |
Формат: | Электронный ресурс eКнига |
Язык: | English |
Опубликовано: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2005.
|
Редактирование: | 1st ed. 2005. |
Серии: | Lecture Notes in Mathematics,
1859 |
Предметы: | |
Online-ссылка: | https://doi.org/10.1007/b104209 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Оглавление:
- Preface
- Introduction
- Connected Reductive Groups and their Lie Algebras
- Deligne-Lusztig Induction
- Local Systems and Perverse Shaeves
- Geometrical Induction
- Deligne-Lusztig Induction and Fourier Transforms
- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
- References
- Index.