Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lu...
Saved in:
主要作者: | |
---|---|
企業作者: | |
格式: | 電子 電子書 |
語言: | English |
出版: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2005.
|
版: | 1st ed. 2005. |
叢編: | Lecture Notes in Mathematics,
1859 |
主題: | |
在線閱讀: | https://doi.org/10.1007/b104209 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
書本目錄:
- Preface
- Introduction
- Connected Reductive Groups and their Lie Algebras
- Deligne-Lusztig Induction
- Local Systems and Perverse Shaeves
- Geometrical Induction
- Deligne-Lusztig Induction and Fourier Transforms
- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits
- References
- Index.