Introduction to Symplectic Dirac Operators

One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L^2-Hilbert space b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Habermann, Katharina. (VerfasserIn, http://id.loc.gov/vocabulary/relators/aut), Habermann, Lutz. (http://id.loc.gov/vocabulary/relators/aut)
Körperschaft: SpringerLink (Online service)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Ausgabe:1st ed. 2006.
Schriftenreihe:Lecture Notes in Mathematics, 1887
Schlagworte:
Online Zugang:https://doi.org/10.1007/b138212
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
LEADER 03629nam a22005175i 4500
001 978-3-540-33421-7
003 DE-He213
005 20200704134135.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540334217  |9 978-3-540-33421-7 
024 7 |a 10.1007/b138212  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Habermann, Katharina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Symplectic Dirac Operators  |h [electronic resource] /  |c by Katharina Habermann, Lutz Habermann. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 125 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1887 
505 0 |a Background on Symplectic Spinors -- Symplectic Connections -- Symplectic Spinor Fields -- Symplectic Dirac Operators -- An Associated Second Order Operator -- The Kähler Case -- Fourier Transform for Symplectic Spinors -- Lie Derivative and Quantization. 
520 |a One of the basic ideas in differential geometry is that the study of analytic properties of certain differential operators acting on sections of vector bundles yields geometric and topological properties of the underlying base manifold. Symplectic spinor fields are sections in an L^2-Hilbert space bundle over a symplectic manifold and symplectic Dirac operators, acting on symplectic spinor fields, are associated to the symplectic manifold in a very natural way. Hence they may be expected to give interesting applications in symplectic geometry and symplectic topology. These symplectic Dirac operators are called Dirac operators, since they are defined in an analogous way as the classical Riemannian Dirac operator known from Riemannian spin geometry. They are called symplectic because they are constructed by use of the symplectic setting of the underlying symplectic manifold. This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research. 
650 0 |a Differential geometry. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12082 
700 1 |a Habermann, Lutz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540822721 
776 0 8 |i Printed edition:  |z 9783540334200 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1887 
856 4 0 |u https://doi.org/10.1007/b138212 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)