Guts of Surfaces and the Colored Jones Polynomial

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Main Authors: Futer, David. (Author, http://id.loc.gov/vocabulary/relators/aut), Kalfagianni, Efstratia. (http://id.loc.gov/vocabulary/relators/aut), Purcell, Jessica. (http://id.loc.gov/vocabulary/relators/aut)
Institution som forfatter: SpringerLink (Online service)
Format: Electronisk eBog
Sprog:English
Udgivet: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Udgivelse:1st ed. 2013.
Serier:Lecture Notes in Mathematics, 2069
Fag:
Online adgang:https://doi.org/10.1007/978-3-642-33302-6
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Beskrivelse
Summary:This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants.
Fysisk beskrivelse:X, 170 p. 62 illus., 45 illus. in color. online resource.
ISBN:9783642333026
ISSN:0075-8434 ;