Guts of Surfaces and the Colored Jones Polynomial
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...
Enregistré dans:
Auteurs principaux: | Futer, David. (Auteur, http://id.loc.gov/vocabulary/relators/aut), Kalfagianni, Efstratia. (http://id.loc.gov/vocabulary/relators/aut), Purcell, Jessica. (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Collectivité auteur: | SpringerLink (Online service) |
Format: | Électronique eBook |
Langue: | English |
Publié: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Édition: | 1st ed. 2013. |
Collection: | Lecture Notes in Mathematics,
2069 |
Sujets: | |
Accès en ligne: | https://doi.org/10.1007/978-3-642-33302-6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Diffeomorphisms of Elliptic 3-Manifolds
par: Hong, Sungbok., et autres
Publié: (2012) -
Differential Topology Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 25 - September 4, 1976 /
Publié: (2011) -
Introduction to Topological Manifolds
par: Lee, John., et autres
Publié: (2011) -
An Introduction to Manifolds
par: Tu, Loring W., et autres
Publié: (2008) -
An Introduction to Manifolds
par: Tu, Loring W., et autres
Publié: (2011)