Guts of Surfaces and the Colored Jones Polynomial
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...
Guardado en:
Autores Principales: | Futer, David. (Autor, http://id.loc.gov/vocabulary/relators/aut), Kalfagianni, Efstratia. (http://id.loc.gov/vocabulary/relators/aut), Purcell, Jessica. (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Lenguaje: | English |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Series: | Lecture Notes in Mathematics,
2069 |
Materias: | |
Acceso en línea: | https://doi.org/10.1007/978-3-642-33302-6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diffeomorphisms of Elliptic 3-Manifolds
por: Hong, Sungbok., et al.
Publicado: (2012) -
Differential Topology Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 25 - September 4, 1976 /
Publicado: (2011) -
Introduction to Topological Manifolds
por: Lee, John., et al.
Publicado: (2011) -
An Introduction to Manifolds
por: Tu, Loring W., et al.
Publicado: (2008) -
An Introduction to Manifolds
por: Tu, Loring W., et al.
Publicado: (2011)