Guts of Surfaces and the Colored Jones Polynomial
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...
Сохранить в:
Главные авторы: | , , |
---|---|
Соавтор: | |
Формат: | Электронный ресурс eКнига |
Язык: | English |
Опубликовано: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Редактирование: | 1st ed. 2013. |
Серии: | Lecture Notes in Mathematics,
2069 |
Предметы: | |
Online-ссылка: | https://doi.org/10.1007/978-3-642-33302-6 |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Оглавление:
- 1 Introduction
- 2 Decomposition into 3–balls
- 3 Ideal Polyhedra
- 4 I–bundles and essential product disks
- 5 Guts and fibers
- 6 Recognizing essential product disks
- 7 Diagrams without non-prime arcs
- 8 Montesinos links
- 9 Applications
- 10 Discussion and questions.