Predicting Transcription Factor Complexes A Novel Approach to Data Integration in Systems Biology /

In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory  networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the...

Full description

Saved in:
Bibliographic Details
Main Author: Will, Thorsten. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Edition:1st ed. 2015.
Series:BestMasters,
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-08269-7
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03187nam a22005295i 4500
001 978-3-658-08269-7
003 DE-He213
005 20200920070455.0
007 cr nn 008mamaa
008 141205s2015 gw | s |||| 0|eng d
020 |a 9783658082697  |9 978-3-658-08269-7 
024 7 |a 10.1007/978-3-658-08269-7  |2 doi 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
072 7 |a PSD  |2 thema 
072 7 |a UB  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Will, Thorsten.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Predicting Transcription Factor Complexes  |h [electronic resource] :  |b A Novel Approach to Data Integration in Systems Biology /  |c by Thorsten Will. 
250 |a 1st ed. 2015. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XIX, 142 p. 29 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3577 
505 0 |a Protein Complex Prediction -- Protein-Protein Interaction Networks -- Domain-Domain Interaction Networks -- Combinatorial Algorithms -- Algorithm Engineering. 
520 |a In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory  networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the practicability using data of the well-studied yeast S.cereviseae. The novel insights offer extensive capabilities towards a better understanding of the combinatorial control driving transcriptional regulation. Contents Protein Complex Prediction Protein-Protein Interaction Networks Domain-Domain Interaction Networks Combinatorial Algorithms Algorithm Engineering  Target Groups Computational biologists and biologists working with gene regulatory networks Computer scientists interested in biological issues  The Author Currently, the author is pursuing his Ph.D. at the Center for Bioinformatics in Saarbrücken, Germany.  . 
650 0 |a Bioinformatics. 
650 0 |a Bioinformatics . 
650 0 |a Computational biology . 
650 0 |a Biomathematics. 
650 1 4 |a Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L15001 
650 2 4 |a Computer Appl. in Life Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L17004 
650 2 4 |a Mathematical and Computational Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658082703 
776 0 8 |i Printed edition:  |z 9783658082680 
830 0 |a BestMasters,  |x 2625-3577 
856 4 0 |u https://doi.org/10.1007/978-3-658-08269-7 
912 |a ZDB-2-BHS 
912 |a ZDB-2-SXBP 
950 |a Behavioral Science (SpringerNature-11640) 
950 |a Behavioral Science and Psychology (R0) (SpringerNature-43718)