Analysis and Control of Complex Dynamical Systems Robust Bifurcation, Dynamic Attractors, and Network Complexity /

This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subje...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Aihara, Kazuyuki. (Editor, http://id.loc.gov/vocabulary/relators/edt), Imura, Jun-ichi. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ueta, Tetsushi. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Tokyo : Springer Japan : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Mathematics for Industry, 7
Subjects:
Online Access:https://doi.org/10.1007/978-4-431-55013-6
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04451nam a22006015i 4500
001 978-4-431-55013-6
003 DE-He213
005 20200706044252.0
007 cr nn 008mamaa
008 150320s2015 ja | s |||| 0|eng d
020 |a 9784431550136  |9 978-4-431-55013-6 
024 7 |a 10.1007/978-4-431-55013-6  |2 doi 
050 4 |a TA355 
050 4 |a TA352-356 
072 7 |a TGMD4  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Analysis and Control of Complex Dynamical Systems  |h [electronic resource] :  |b Robust Bifurcation, Dynamic Attractors, and Network Complexity /  |c edited by Kazuyuki Aihara, Jun-ichi Imura, Tetsushi Ueta. 
250 |a 1st ed. 2015. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 211 p. 103 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics for Industry,  |x 2198-350X ;  |v 7 
505 0 |a Part I Robust Bifurcation and Control -- Dynamic Robust Bifurcation Analysis -- Robust Bifurcation Analysis Based on Degree of Stability -- Use of a Matrix Inequality Technique for Avoiding Undesirable Bifurcation -- A Method for Constructing a Robust System Against Unexpected Parameter Variation -- Parametric Control to Avoid Bifurcation Based on Maximum Local Lyapunov Exponent -- Threshold Control for Stabilization of Unstable Periodic Orbits in Chaotic Hybrid Systems -- Part II Dynamic Attractor and Control -- Chaotic Behavior of Orthogonally Projective Triangle Folding Map -- Stabilization Control of Quasi-Periodic Orbits -- Feedback Control Method Based on Predicted Future States for Controlling Chaos -- Ultra-Discretization of Nonlinear Control System with Spatial Symmetry -- Feedback Control of Spatial Patterns in Reaction-Diffusion System -- Control of Unstabilizable Switched Systems -- Part III Complex Networks and Modeling for Control -- Clustered Model Reduction of Large-Scale Bidirectional Networks -- Network Structure Identification from a Small Number of Inputs/Outputs. 
520 |a This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Computational complexity. 
650 0 |a Physics. 
650 0 |a System theory. 
650 1 4 |a Vibration, Dynamical Systems, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15036 
650 2 4 |a Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11022 
650 2 4 |a Applications of Graph Theory and Complex Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P33010 
650 2 4 |a Complex Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13090 
700 1 |a Aihara, Kazuyuki.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Imura, Jun-ichi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ueta, Tetsushi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431550143 
776 0 8 |i Printed edition:  |z 9784431550129 
776 0 8 |i Printed edition:  |z 9784431563877 
830 0 |a Mathematics for Industry,  |x 2198-350X ;  |v 7 
856 4 0 |u https://doi.org/10.1007/978-4-431-55013-6 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)