Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Phosphatases such as TNAP are fundamental in regulating cellular, and consequently numerous body functions. TNAP is a ubiquitous enzyme with a wide spectrum of substrates and specificity regulation at the cellular level and the lack of TNAP activity is a lethal condition. Recent findings of a highly...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Fonta, Caroline. (Editor, http://id.loc.gov/vocabulary/relators/edt), Négyessy, László. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: Electronic eBook
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Subcellular Biochemistry, 76
Subjects:
Online Access:https://doi.org/10.1007/978-94-017-7197-9
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04615nam a22005535i 4500
001 978-94-017-7197-9
003 DE-He213
005 20200706015135.0
007 cr nn 008mamaa
008 150728s2015 ne | s |||| 0|eng d
020 |a 9789401771979  |9 978-94-017-7197-9 
024 7 |a 10.1007/978-94-017-7197-9  |2 doi 
050 4 |a QP34-38 
072 7 |a MFG  |2 bicssc 
072 7 |a MED075000  |2 bisacsh 
072 7 |a MFG  |2 thema 
082 0 4 |a 612  |2 23 
245 1 0 |a Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)  |h [electronic resource] /  |c edited by Caroline Fonta, László Négyessy. 
250 |a 1st ed. 2015. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2015. 
300 |a XXII, 395 p. 58 illus., 37 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Subcellular Biochemistry,  |x 0306-0225 ;  |v 76 
505 0 |a 1 Clinical forms and animal models of hypophosphatasia -- 2 Molecular genetics of hypophosphatasia and phenotype-genotype correlations -- 3 Genetically modified mice for studying TNAP function -- 4 Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis -- 5 Rediscovering TNAP in the brain: a major role in regulating the function and development of the cerebral cortex -- 6 TNAP in the retina -- 7 Tissue Non-specific Alkaline Phosphatase (TNAP) in vessels of the brain -- 8 What can we learn about the neural functions of TNAP from studies on other organs and tissues? -- 9 TNAP, an essential player in membrane lipid rafts of neuronal cells -- 10 Signal transduction pathways of TNAP: molecular network analyses -- 11 Vitamin B-6 Metabolism and Interactions with TNAP -- 12 Tetramisole and levamisole suppress neuronal activity independently from their inhibitory action on Tissue Non-Specific Alkaline Phosphatase in mouse cortex -- 13 TNAP and Pain Control -- 14 Neurological symptoms of Hypophosphatasia -- 15 Recombinant enzyme replacement therapy in hypophosphatasia -- 16 Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome -- 17 The role of tissue non-specific alkaline phosphatase (TNAP) in Neurodegenerative diseases: Alzheimer’s disease in the focus -- 18 TNAP plays a key role in neural differentiation as well as in neurodegenerative disorders -- Index. 
520 |a Phosphatases such as TNAP are fundamental in regulating cellular, and consequently numerous body functions. TNAP is a ubiquitous enzyme with a wide spectrum of substrates and specificity regulation at the cellular level and the lack of TNAP activity is a lethal condition. Recent findings of a highly specific regional, laminar and subcellular localization of TNAP in the cerebral cortex indicates that in addition to its metabolic and skeletal functions, TNAP also plays a role in regulating cerebral functions, most probably cognition. In fact, TNAP disturbance could result in complex diseases such as epilepsy, developmental retardation and Alzheimer disease. Available data suggest that, regarding brain functions, TNAP is a potentially important target of clinical research. The proposed book aims to provide an overview of our current understanding of the functions of TNAP in the brain. 
650 0 |a Human physiology. 
650 0 |a Animal physiology. 
650 0 |a Developmental biology. 
650 0 |a Neurosciences. 
650 1 4 |a Human Physiology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/B13004 
650 2 4 |a Animal Physiology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L33030 
650 2 4 |a Developmental Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L18000 
650 2 4 |a Neurosciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/B18006 
700 1 |a Fonta, Caroline.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Négyessy, László.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789401771962 
776 0 8 |i Printed edition:  |z 9789401771986 
776 0 8 |i Printed edition:  |z 9789402402735 
830 0 |a Subcellular Biochemistry,  |x 0306-0225 ;  |v 76 
856 4 0 |u https://doi.org/10.1007/978-94-017-7197-9 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)