SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation
Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...
Uloženo v:
| Hlavní autoři: | , , , , , |
|---|---|
| Médium: | Článek |
| Jazyk: | English |
| Vydáno: |
Elsevier
2024
|
| On-line přístup: | http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
