SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation
Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...
        Guardat en:
      
    
                  | Autors principals: | , , , , , | 
|---|---|
| Format: | Article | 
| Idioma: | English | 
| Publicat: | 
        Elsevier
    
      2024
     | 
| Accés en línia: | http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf | 
| Etiquetes: | 
       Afegir etiqueta    
     
      Sense etiquetes, Sigues el primer a etiquetar aquest registre!
    | 
Sigues el primer a deixar un comentari!
