SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Main Authors: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
Formato: Artigo
Idioma:English
Publicado em: Elsevier 2024
Acesso em linha:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!