SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijät: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: Elsevier 2024
Linkit:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!