SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autors principals: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
Format: Article
Idioma:English
Publicat: Elsevier 2024
Accés en línia:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!