SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Main Authors: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
Format: Article
Jezik:English
Izdano: Elsevier 2024
Online dostop:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
Oznake: Označite
Brez oznak, prvi označite!