SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

全面介绍

Saved in:
书目详细资料
Main Authors: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
格式: Article
语言:English
出版: Elsevier 2024
在线阅读:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
标签: 添加标签
没有标签, 成为第一个标记此记录!