SwinUNeLCsT: Global–local spatial representation learning with hybrid CNN–transformer for efficient tuberculosis lung cavity weakly supervised semantic segmentation

Radiological diagnosis of lung cavities (LCs) is the key to identifying tuberculosis (TB). Conventional deep learning methods rely on a large amount of accurate pixel-level data to segment LCs. This process is timeconsuming and laborious, especially for those subtle LCs. To address such challenges,...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Zhuoyi, Tan, Hizmawati, Madzin, Bahari, Norafida, Rahmita, Wirza OK Rahmat, Fatimah, Khalid, Puteri, Suhaiza Sulaiman
Формат: Статья
Язык:English
Опубликовано: Elsevier 2024
Online-ссылка:http://psasir.upm.edu.my/id/eprint/111381/1/SwinUNeLCsT.pdf
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!